Let M be a separable Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a function, or of a section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in M, extends to a function on the whole of M.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-2, author = {C. J. Atkin}, title = {Extension of smooth functions in infinite dimensions II: manifolds}, journal = {Studia Mathematica}, volume = {151}, year = {2002}, pages = {215-241}, zbl = {1030.46112}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-2} }
C. J. Atkin. Extension of smooth functions in infinite dimensions II: manifolds. Studia Mathematica, Tome 151 (2002) pp. 215-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-2/