Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II
Dariusz Cichoń
Studia Mathematica, Tome 151 (2002), p. 175-188 / Harvested from The Polish Digital Mathematics Library

The Newman-Shapiro Isometry Theorem is proved in the case of Segal-Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the Gaussian measure on ℂⁿ). The theorem is applied to find the adjoint of an unbounded Toeplitz operator Tφ with φ being an operator-valued exponential polynomial.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285307
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6,
     author = {Dariusz Cicho\'n},
     title = {Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {175-188},
     zbl = {1003.47022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6}
}
Dariusz Cichoń. Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II. Studia Mathematica, Tome 151 (2002) pp. 175-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6/