The Newman-Shapiro Isometry Theorem is proved in the case of Segal-Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the Gaussian measure on ℂⁿ). The theorem is applied to find the adjoint of an unbounded Toeplitz operator with φ being an operator-valued exponential polynomial.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6, author = {Dariusz Cicho\'n}, title = {Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II}, journal = {Studia Mathematica}, volume = {151}, year = {2002}, pages = {175-188}, zbl = {1003.47022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6} }
Dariusz Cichoń. Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II. Studia Mathematica, Tome 151 (2002) pp. 175-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-2-6/