Uniqueness of unconditional basis of p(c) and p(), 0 < p < 1
F. Albiac ; C. Leránoz
Studia Mathematica, Tome 151 (2002), p. 35-52 / Harvested from The Polish Digital Mathematics Library

We prove that the quasi-Banach spaces p(c) and p() (0 < p < 1) have a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and Tzafriri have previously proved that the same is true for the respective Banach envelopes (c) and ℓ₁(ℓ₂). They used duality techniques which are not available in the non-locally convex case.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285144
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-4,
     author = {F. Albiac and C. Ler\'anoz},
     title = {Uniqueness of unconditional basis of $l\_{p}(c0)$ and $l\_{p}(l2)$, 0 < p < 1},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {35-52},
     zbl = {1031.46006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-4}
}
F. Albiac; C. Leránoz. Uniqueness of unconditional basis of $ℓ_{p}(c₀)$ and $ℓ_{p}(ℓ₂)$, 0 < p < 1. Studia Mathematica, Tome 151 (2002) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-4/