The aim of this paper is to establish the equivalence between the non-pluripolarity of a compact set in a complex space and the property for the dual space of the space of germs of holomorphic functions on that compact set.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-1, author = {Le Mau Hai and Tang Van Long}, title = {The non-pluripolarity of compact sets in complex spaces and the property $(LB^{$\infty$})$ for the space of germs of holomorphic functions}, journal = {Studia Mathematica}, volume = {151}, year = {2002}, pages = {1-12}, zbl = {1009.32022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-1} }
Le Mau Hai; Tang Van Long. The non-pluripolarity of compact sets in complex spaces and the property $(LB^{∞})$ for the space of germs of holomorphic functions. Studia Mathematica, Tome 151 (2002) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-1-1/