The harmonic Cesáro and Copson operators on the spaces Lp(), 1 ≤ p ≤ 2
Ferenc Móricz
Studia Mathematica, Tome 151 (2002), p. 267-279 / Harvested from The Polish Digital Mathematics Library

The harmonic Cesàro operator is defined for a function f in Lp() for some 1 ≤ p < ∞ by setting (f)(x):=x(f(u)/u)du for x > 0 and (f)(x):=--x(f(u)/u)du for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L¹loc() by setting *(f)(x):=(1/x)xf(u)du for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If fLp() for some 1 ≤ p ≤ 2, then ((f))(t)=*(f̂)(t) a.e., where f̂ denotes the Fourier transform of f. (ii) If fLp() for some 1 < p ≤ 2, then (*(f))(t)=(f̂)(t) a.e. As a by-product of our proofs, we obtain representations of ((f))(t) and (*(f))(t) in terms of Lebesgue integrals in case f belongs to Lp() for some 1 < p ≤ 2. These representations are valid for almost every t and may be useful in other contexts.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285082
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-3-4,
     author = {Ferenc M\'oricz},
     title = {The harmonic Ces\'aro and Copson operators on the spaces $L^{p}($\mathbb{R}$)$, 1 $\leq$ p $\leq$ 2},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {267-279},
     zbl = {1011.47026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-3-4}
}
Ferenc Móricz. The harmonic Cesáro and Copson operators on the spaces $L^{p}(ℝ)$, 1 ≤ p ≤ 2. Studia Mathematica, Tome 151 (2002) pp. 267-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-3-4/