It is proved that Riesz elements in the intersection of the kernel and the closure of the image of a family of derivations on a Banach algebra are quasinilpotent. Some related results are obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-7,
author = {Victor S. Shulman and Yuri\u\i\ V. Turovskii},
title = {On the Kleinecke-Shirokov Theorem for families of derivations},
journal = {Studia Mathematica},
volume = {151},
year = {2002},
pages = {185-190},
zbl = {0993.47030},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-7}
}
Victor S. Shulman; Yuriĭ V. Turovskii. On the Kleinecke-Shirokov Theorem for families of derivations. Studia Mathematica, Tome 151 (2002) pp. 185-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-7/