We prove that a function belonging to a fractional Sobolev space may be approximated in capacity and norm by smooth functions belonging to , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5,
author = {David Swanson},
title = {Pointwise inequalities and approximation in fractional Sobolev spaces},
journal = {Studia Mathematica},
volume = {151},
year = {2002},
pages = {147-174},
zbl = {0993.46016},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5}
}
David Swanson. Pointwise inequalities and approximation in fractional Sobolev spaces. Studia Mathematica, Tome 151 (2002) pp. 147-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5/