We prove that a function belonging to a fractional Sobolev space may be approximated in capacity and norm by smooth functions belonging to , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5, author = {David Swanson}, title = {Pointwise inequalities and approximation in fractional Sobolev spaces}, journal = {Studia Mathematica}, volume = {151}, year = {2002}, pages = {147-174}, zbl = {0993.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5} }
David Swanson. Pointwise inequalities and approximation in fractional Sobolev spaces. Studia Mathematica, Tome 151 (2002) pp. 147-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-5/