Podal subspaces on the unit polydisk
Kunyu Guo
Studia Mathematica, Tome 151 (2002), p. 109-120 / Harvested from The Polish Digital Mathematics Library

Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space H²(D). To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods developed in this note, we can assess when a unitary (resp. similarity) orbit contains a podal (resp. an s-podal) point, and hence provide examples of orbits without such points.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284989
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-2,
     author = {Kunyu Guo},
     title = {Podal subspaces on the unit polydisk},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {109-120},
     zbl = {1018.46028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-2}
}
Kunyu Guo. Podal subspaces on the unit polydisk. Studia Mathematica, Tome 151 (2002) pp. 109-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-2/