Let -ℒ be the generator of a Lévy semigroup on L¹(ℝⁿ) and f: ℝ → ℝⁿ be a nonlinearity. We study the large time asymptotic behavior of solutions of the nonlocal and nonlinear equations uₜ + ℒu + ∇·f(u) = 0, analyzing their -decay and two terms of their asymptotics. These equations appear as models of physical phenomena that involve anomalous diffusions such as Lévy flights.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5, author = {Piotr Biler and Grzegorz Karch and Wojbor A. Woyczy\'nski}, title = {Asymptotics for conservation laws involving L\'evy diffusion generators}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {171-192}, zbl = {0990.35023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5} }
Piotr Biler; Grzegorz Karch; Wojbor A. Woyczyński. Asymptotics for conservation laws involving Lévy diffusion generators. Studia Mathematica, Tome 147 (2001) pp. 171-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5/