Asymptotics for conservation laws involving Lévy diffusion generators
Piotr Biler ; Grzegorz Karch ; Wojbor A. Woyczyński
Studia Mathematica, Tome 147 (2001), p. 171-192 / Harvested from The Polish Digital Mathematics Library

Let -ℒ be the generator of a Lévy semigroup on L¹(ℝⁿ) and f: ℝ → ℝⁿ be a nonlinearity. We study the large time asymptotic behavior of solutions of the nonlocal and nonlinear equations uₜ + ℒu + ∇·f(u) = 0, analyzing their Lp-decay and two terms of their asymptotics. These equations appear as models of physical phenomena that involve anomalous diffusions such as Lévy flights.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284484
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5,
     author = {Piotr Biler and Grzegorz Karch and Wojbor A. Woyczy\'nski},
     title = {Asymptotics for conservation laws involving L\'evy diffusion generators},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {171-192},
     zbl = {0990.35023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5}
}
Piotr Biler; Grzegorz Karch; Wojbor A. Woyczyński. Asymptotics for conservation laws involving Lévy diffusion generators. Studia Mathematica, Tome 147 (2001) pp. 171-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-5/