An exact functional Radon-Nikodym theorem for Daniell integrals
E. de Amo ; I. Chitescu ; M. Díaz Carrillo
Studia Mathematica, Tome 147 (2001), p. 97-110 / Harvested from The Polish Digital Mathematics Library

Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:285230
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1,
     author = {E. de Amo and I. Chitescu and M. D\'\i az Carrillo},
     title = {An exact functional Radon-Nikodym theorem for Daniell integrals},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {97-110},
     zbl = {1014.28014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1}
}
E. de Amo; I. Chitescu; M. Díaz Carrillo. An exact functional Radon-Nikodym theorem for Daniell integrals. Studia Mathematica, Tome 147 (2001) pp. 97-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1/