Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1, author = {E. de Amo and I. Chitescu and M. D\'\i az Carrillo}, title = {An exact functional Radon-Nikodym theorem for Daniell integrals}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {97-110}, zbl = {1014.28014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1} }
E. de Amo; I. Chitescu; M. Díaz Carrillo. An exact functional Radon-Nikodym theorem for Daniell integrals. Studia Mathematica, Tome 147 (2001) pp. 97-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-2-1/