On the Kaczmarz algorithm of approximation in infinite-dimensional spaces
Stanisław Kwapień ; Jan Mycielski
Studia Mathematica, Tome 147 (2001), p. 75-86 / Harvested from The Polish Digital Mathematics Library

The Kaczmarz algorithm of successive projections suggests the following concept. A sequence (ek) of unit vectors in a Hilbert space is said to be effective if for each vector x in the space the sequence (xₙ) converges to x where (xₙ) is defined inductively: x₀ = 0 and x=xn-1+αe, where α=x-xn-1,e. We prove the effectivity of some sequences in Hilbert spaces. We generalize the concept of effectivity to sequences of vectors in Banach spaces and we prove some results for this more general concept.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284583
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-7,
     author = {Stanis\l aw Kwapie\'n and Jan Mycielski},
     title = {On the Kaczmarz algorithm of approximation in infinite-dimensional spaces},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {75-86},
     zbl = {0987.41020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-7}
}
Stanisław Kwapień; Jan Mycielski. On the Kaczmarz algorithm of approximation in infinite-dimensional spaces. Studia Mathematica, Tome 147 (2001) pp. 75-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-7/