We prove that the Hausdorff operator generated by a function ϕ is bounded on the real Hardy space , 0 < p ≤ 1, if the Fourier transform ϕ̂ of ϕ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Cesàro operator of order α on , 2/(2α+1) < p ≤ 1. Our proof is based on the atomic decomposition and molecular characterization of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4, author = {Yuichi Kanjin}, title = {The Hausdorff operators on the real Hardy spaces $H^{p}($\mathbb{R}$)$ }, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {37-45}, zbl = {1001.47018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4} }
Yuichi Kanjin. The Hausdorff operators on the real Hardy spaces $H^{p}(ℝ)$ . Studia Mathematica, Tome 147 (2001) pp. 37-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4/