The Hausdorff operators on the real Hardy spaces Hp()
Yuichi Kanjin
Studia Mathematica, Tome 147 (2001), p. 37-45 / Harvested from The Polish Digital Mathematics Library

We prove that the Hausdorff operator generated by a function ϕ is bounded on the real Hardy space Hp(), 0 < p ≤ 1, if the Fourier transform ϕ̂ of ϕ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Cesàro operator of order α on Hp(), 2/(2α+1) < p ≤ 1. Our proof is based on the atomic decomposition and molecular characterization of Hp().

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:285356
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4,
     author = {Yuichi Kanjin},
     title = {The Hausdorff operators on the real Hardy spaces $H^{p}($\mathbb{R}$)$
            },
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {37-45},
     zbl = {1001.47018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4}
}
Yuichi Kanjin. The Hausdorff operators on the real Hardy spaces $H^{p}(ℝ)$
            . Studia Mathematica, Tome 147 (2001) pp. 37-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-4/