An upper bound for the distance to finitely generated ideals in Douglas algebras
Pamela Gorkin ; Raymond Mortini ; Daniel Suárez
Studia Mathematica, Tome 147 (2001), p. 23-36 / Harvested from The Polish Digital Mathematics Library

Let f be a function in the Douglas algebra A and let I be a finitely generated ideal in A. We give an estimate for the distance from f to I that allows us to generalize a result obtained by Bourgain for H to arbitrary Douglas algebras.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:285298
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-3,
     author = {Pamela Gorkin and Raymond Mortini and Daniel Su\'arez},
     title = {An upper bound for the distance to finitely generated ideals in Douglas algebras},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {23-36},
     zbl = {0996.46020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-3}
}
Pamela Gorkin; Raymond Mortini; Daniel Suárez. An upper bound for the distance to finitely generated ideals in Douglas algebras. Studia Mathematica, Tome 147 (2001) pp. 23-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm148-1-3/