Unicellularity of the multiplication operator on Banach spaces of formal power series
B. Yousefi
Studia Mathematica, Tome 147 (2001), p. 201-209 / Harvested from The Polish Digital Mathematics Library

Let β(n)n=0 be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space p(β) of all power series f(z)=n=0f̂(n)z such that n=0|f̂(n)|p|β(n)|p<. We give some sufficient conditions for the multiplication operator, Mz, to be unicellular on the Banach space p(β). This generalizes the main results obtained by Lu Fang [1].

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:286211
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1,
     author = {B. Yousefi},
     title = {Unicellularity of the multiplication operator on Banach spaces of formal power series},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {201-209},
     zbl = {0995.47020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1}
}
B. Yousefi. Unicellularity of the multiplication operator on Banach spaces of formal power series. Studia Mathematica, Tome 147 (2001) pp. 201-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1/