Let be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space of all power series such that . We give some sufficient conditions for the multiplication operator, , to be unicellular on the Banach space . This generalizes the main results obtained by Lu Fang [1].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1, author = {B. Yousefi}, title = {Unicellularity of the multiplication operator on Banach spaces of formal power series}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {201-209}, zbl = {0995.47020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1} }
B. Yousefi. Unicellularity of the multiplication operator on Banach spaces of formal power series. Studia Mathematica, Tome 147 (2001) pp. 201-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-3-1/