We present monotonicity theorems for index functions of N-fuctions, and obtain formulas for exact values of packing constants. In particular, we show that the Orlicz sequence space generated by the N-function N(v) = (1+|v|)ln(1+|v|) - |v| with Luxemburg norm has the Kottman constant , which answers M. M. Rao and Z. D. Ren’s [8] problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6,
author = {Y. Q. Yan},
title = {Some results on packing in Orlicz sequence spaces},
journal = {Studia Mathematica},
volume = {147},
year = {2001},
pages = {73-88},
zbl = {0986.46004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6}
}
Y. Q. Yan. Some results on packing in Orlicz sequence spaces. Studia Mathematica, Tome 147 (2001) pp. 73-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6/