We present monotonicity theorems for index functions of N-fuctions, and obtain formulas for exact values of packing constants. In particular, we show that the Orlicz sequence space generated by the N-function N(v) = (1+|v|)ln(1+|v|) - |v| with Luxemburg norm has the Kottman constant , which answers M. M. Rao and Z. D. Ren’s [8] problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6, author = {Y. Q. Yan}, title = {Some results on packing in Orlicz sequence spaces}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {73-88}, zbl = {0986.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6} }
Y. Q. Yan. Some results on packing in Orlicz sequence spaces. Studia Mathematica, Tome 147 (2001) pp. 73-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-6/