We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients of -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any the series is the Fourier series of some function φ ∈ ReH¹ with .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-5, author = {J. J. Guadalupe and V. I. Kolyada}, title = {A transplantation theorem for ultraspherical polynomials at critical index}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {51-72}, zbl = {0979.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-5} }
J. J. Guadalupe; V. I. Kolyada. A transplantation theorem for ultraspherical polynomials at critical index. Studia Mathematica, Tome 147 (2001) pp. 51-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-5/