Let denote the strong maximal operator. Let and denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that but . It is shown that if f is a function supported on Q such that but , then there exists a set A of finite measure in ℝ² such that .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4,
author = {Paul Alton Hagelstein},
title = {Local integrability of strong and iterated maximal functions},
journal = {Studia Mathematica},
volume = {147},
year = {2001},
pages = {37-50},
zbl = {0983.42012},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4}
}
Paul Alton Hagelstein. Local integrability of strong and iterated maximal functions. Studia Mathematica, Tome 147 (2001) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4/