Local integrability of strong and iterated maximal functions
Paul Alton Hagelstein
Studia Mathematica, Tome 147 (2001), p. 37-50 / Harvested from The Polish Digital Mathematics Library

Let MS denote the strong maximal operator. Let Mx and My denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that QMyMxh< but QMxMyh=. It is shown that if f is a function supported on Q such that QMyMxf< but QMxMyf=, then there exists a set A of finite measure in ℝ² such that AMSf=.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284422
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4,
     author = {Paul Alton Hagelstein},
     title = {Local integrability of strong and iterated maximal functions},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {37-50},
     zbl = {0983.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4}
}
Paul Alton Hagelstein. Local integrability of strong and iterated maximal functions. Studia Mathematica, Tome 147 (2001) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-4/