Let A: X → X be a bounded operator on a separable complex Hilbert space X with an inner product . For b, c ∈ X, a weak resolvent of A is the complex function of the form . We will discuss an equivalent condition, in terms of weak resolvents, for A to be similar to a restriction of the backward shift of multiplicity 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-3, author = {Yoichi Uetake}, title = {Operators on a Hilbert space similar to a part of the backward shift of multiplicity one}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {27-35}, zbl = {0980.47003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-3} }
Yoichi Uetake. Operators on a Hilbert space similar to a part of the backward shift of multiplicity one. Studia Mathematica, Tome 147 (2001) pp. 27-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm147-1-3/