We derive the equivalence of different forms of Gaussian type shift inequalities. This completes previous results by Bobkov. Our argument strongly relies on the Gaussian model for which we give a geometric approach in terms of norms of barycentres. Similar inequalities hold in the discrete setting; they improve the known results on the so-called isodiametral problem for the discrete cube. The study of norms of barycentres for subsets of convex bodies completes the exposition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-3, author = {F. Barthe and D. Cordero-Erausquin and M. Fradelizi}, title = {Shift inequalities of Gaussian type and norms of barycentres}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {245-259}, zbl = {0984.60024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-3} }
F. Barthe; D. Cordero-Erausquin; M. Fradelizi. Shift inequalities of Gaussian type and norms of barycentres. Studia Mathematica, Tome 147 (2001) pp. 245-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-3/