Extension of smooth functions in infinite dimensions, I: unions of convex sets
C. J. Atkin
Studia Mathematica, Tome 147 (2001), p. 201-226 / Harvested from The Polish Digital Mathematics Library

Let f be a smooth function defined on a finite union U of open convex sets in a locally convex Lindelöf space E. If, for every x ∈ U, the restriction of f to a suitable neighbourhood of x admits a smooth extension to the whole of E, then the restriction of f to a union of convex sets that is strictly smaller than U also admits a smooth extension to the whole of E.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284444
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-1,
     author = {C. J. Atkin},
     title = {Extension of smooth functions in infinite dimensions, I: unions of convex sets},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {201-226},
     zbl = {0979.46054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-1}
}
C. J. Atkin. Extension of smooth functions in infinite dimensions, I: unions of convex sets. Studia Mathematica, Tome 147 (2001) pp. 201-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-3-1/