Gabor meets Littlewood-Paley: Gabor expansions in Lp(d)
Karlheinz Gröchenig ; Christopher Heil
Studia Mathematica, Tome 147 (2001), p. 15-33 / Harvested from The Polish Digital Mathematics Library

It is known that Gabor expansions do not converge unconditionally in Lp and that Lp cannot be characterized in terms of the magnitudes of Gabor coefficients. By using a combination of Littlewood-Paley and Gabor theory, we show that Lp can nevertheless be characterized in terms of Gabor expansions, and that the partial sums of Gabor expansions converge in Lp-norm.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284992
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-1-2,
     author = {Karlheinz Gr\"ochenig and Christopher Heil},
     title = {Gabor meets Littlewood-Paley: Gabor expansions in $L^{p}($\mathbb{R}$^{d})$
            },
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {15-33},
     zbl = {0970.42021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-1-2}
}
Karlheinz Gröchenig; Christopher Heil. Gabor meets Littlewood-Paley: Gabor expansions in $L^{p}(ℝ^{d})$
            . Studia Mathematica, Tome 147 (2001) pp. 15-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm146-1-2/