We introduce the notion of a local n-times integrated C-semigroup, which unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study its relations to the C-wellposedness of the (n + 1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local n-times integrated C-semigroups is given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-6, author = {Miao Li and Fa-lun Huang and Quan Zheng}, title = {Local integrated C-semigroups}, journal = {Studia Mathematica}, volume = {147}, year = {2001}, pages = {265-280}, zbl = {0999.47031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-6} }
Miao Li; Fa-lun Huang; Quan Zheng. Local integrated C-semigroups. Studia Mathematica, Tome 147 (2001) pp. 265-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-6/