Spaces of operators and c₀
P. Lewis
Studia Mathematica, Tome 147 (2001), p. 213-218 / Harvested from The Polish Digital Mathematics Library

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in XγY*. Applications to embeddings of c₀ in various spaces of operators are given.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284631
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-3,
     author = {P. Lewis},
     title = {Spaces of operators and c0},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {213-218},
     zbl = {0986.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-3}
}
P. Lewis. Spaces of operators and c₀. Studia Mathematica, Tome 147 (2001) pp. 213-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-3/