On the relative fundamental solutions for a second order differential operator on the Heisenberg group
T. Godoy ; L. Saal
Studia Mathematica, Tome 147 (2001), p. 143-164 / Harvested from The Polish Digital Mathematics Library

Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let L=j=1p(X²j+Y²j)-j=p+1n(X²j+Y²j), where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:286506
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-2-4,
     author = {T. Godoy and L. Saal},
     title = {On the relative fundamental solutions for a second order differential operator on the Heisenberg group},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {143-164},
     zbl = {0974.43002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-2-4}
}
T. Godoy; L. Saal. On the relative fundamental solutions for a second order differential operator on the Heisenberg group. Studia Mathematica, Tome 147 (2001) pp. 143-164. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-2-4/