H functional calculus in real interpolation spaces, II
Giovanni Dore
Studia Mathematica, Tome 147 (2001), p. 75-83 / Harvested from The Polish Digital Mathematics Library

Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e.the spectrum of A is contained in a sector of angle 2ω, symmetric about the real positive axis, and ||λ(λI-A)-1|| is bounded outside every larger sector), then A has a bounded H functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:285105
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-5,
     author = {Giovanni Dore},
     title = {$H^{$\infty$}$ functional calculus in real interpolation spaces, II},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {75-83},
     zbl = {0985.47015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-5}
}
Giovanni Dore. $H^{∞}$ functional calculus in real interpolation spaces, II. Studia Mathematica, Tome 147 (2001) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-5/