Parabolic potentials and wavelet transforms with the generalized translation
Ilham A. Aliev ; Boris Rubin
Studia Mathematica, Tome 147 (2001), p. 1-16 / Harvested from The Polish Digital Mathematics Library

Parabolic wavelet transforms associated with the singular heat operators -Δγ+/t and I-Δγ+/t, where Δγ=k=1n²/x²k+(2γ/x)/x, are introduced. These transforms are defined in terms of the relevant generalized translation operator. An analogue of the Calderón reproducing formula is established. New inversion formulas are obtained for generalized parabolic potentials representing negative powers of the singular heat operators.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:285263
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-1,
     author = {Ilham A. Aliev and Boris Rubin},
     title = {Parabolic potentials and wavelet transforms with the generalized translation},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {1-16},
     zbl = {0971.42030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-1}
}
Ilham A. Aliev; Boris Rubin. Parabolic potentials and wavelet transforms with the generalized translation. Studia Mathematica, Tome 147 (2001) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-1-1/