On (C,1) summability for Vilenkin-like systems
G. Gát
Studia Mathematica, Tome 147 (2001), p. 101-120 / Harvested from The Polish Digital Mathematics Library

We give a common generalization of the Walsh system, Vilenkin system, the character system of the group of 2-adic (m-adic) integers, the product system of normalized coordinate functions for continuous irreducible unitary representations of the coordinate groups of noncommutative Vilenkin groups, the UDMD product systems (defined by F. Schipp) and some other systems. We prove that for integrable functions σₙf → f (n → ∞) a.e., where σₙf is the nth (C,1) mean of f. (For the character system of the group of m-adic integers, this proves a more than 20 years old conjecture of M. H. Taibleson [24, p. 114].) Define the maximal operator σ*f : = supₙ|σₙf|. We prove that σ* is of type (p,p) for all 1< p ≤ ∞ and of weak type (1,1). Moreover, ||σ*f||c||f||H, where H is the Hardy space.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:284899
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm144-2-1,
     author = {G. G\'at},
     title = {On (C,1) summability for Vilenkin-like systems},
     journal = {Studia Mathematica},
     volume = {147},
     year = {2001},
     pages = {101-120},
     zbl = {0974.42020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm144-2-1}
}
G. Gát. On (C,1) summability for Vilenkin-like systems. Studia Mathematica, Tome 147 (2001) pp. 101-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm144-2-1/