On countable cofinality and decomposition of definable thin orderings
Vladimir Kanovei ; Vassily Lyubetsky
Fundamenta Mathematicae, Tome 233 (2016), p. 13-36 / Harvested from The Polish Digital Mathematics Library

We prove that in some cases definable thin sets (including chains) of Borel partial orderings are necessarily countably cofinal. This includes the following cases: analytic thin sets, ROD thin sets in the Solovay model, and Σ¹₂ thin sets under the assumption that ωL[x]<ω for all reals x. We also prove that definable thin wellorderings admit partitions into definable chains in the Solovay model.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286182
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm977-10-2015,
     author = {Vladimir Kanovei and Vassily Lyubetsky},
     title = {On countable cofinality and decomposition of definable thin orderings},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {13-36},
     zbl = {06622324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm977-10-2015}
}
Vladimir Kanovei; Vassily Lyubetsky. On countable cofinality and decomposition of definable thin orderings. Fundamenta Mathematicae, Tome 233 (2016) pp. 13-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm977-10-2015/