Preperiodic dynatomic curves for zzd+c
Yan Gao
Fundamenta Mathematicae, Tome 233 (2016), p. 37-69 / Harvested from The Polish Digital Mathematics Library

The preperiodic dynatomic curve n,p is the closure in ℂ² of the set of (c,z) such that z is a preperiodic point of the polynomial zzd+c with preperiod n and period p (n,p ≥ 1). We prove that each n,p has exactly d-1 irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of n,p. We also compute the genus of each component and the Galois group of the defining polynomial of n,p.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286217
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm91-12-2015,
     author = {Yan Gao},
     title = {Preperiodic dynatomic curves for $z - z^{d} + c$
            },
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {37-69},
     zbl = {06545389},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm91-12-2015}
}
Yan Gao. Preperiodic dynatomic curves for $z ↦ z^{d} + c$
            . Fundamenta Mathematicae, Tome 233 (2016) pp. 37-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm91-12-2015/