The rational field is not universally definable in pseudo-exponentiation
Jonathan Kirby
Fundamenta Mathematicae, Tome 233 (2016), p. 79-88 / Harvested from The Polish Digital Mathematics Library

We show that the field of rational numbers is not definable by a universal formula in Zilber's pseudo-exponential field.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:282737
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-6,
     author = {Jonathan Kirby},
     title = {The rational field is not universally definable in pseudo-exponentiation},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {79-88},
     zbl = {06497295},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-6}
}
Jonathan Kirby. The rational field is not universally definable in pseudo-exponentiation. Fundamenta Mathematicae, Tome 233 (2016) pp. 79-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-6/