We consider a slightly modified form of the standard Rudin-Keisler order on ideals and demonstrate the existence of complete (with respect to this order) ideals in various projective classes. Using our methods, we obtain a simple proof of Hjorth’s theorem on the existence of a complete Π¹₁ equivalence relation. This proof enables us (under PD) to generalize Hjorth’s result to the classes of equivalence relations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5, author = {Konstantinos A. Beros}, title = {Weak Rudin-Keisler reductions on projective ideals}, journal = {Fundamenta Mathematicae}, volume = {233}, year = {2016}, pages = {65-78}, zbl = {06497294}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5} }
Konstantinos A. Beros. Weak Rudin-Keisler reductions on projective ideals. Fundamenta Mathematicae, Tome 233 (2016) pp. 65-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5/