Weak Rudin-Keisler reductions on projective ideals
Konstantinos A. Beros
Fundamenta Mathematicae, Tome 233 (2016), p. 65-78 / Harvested from The Polish Digital Mathematics Library

We consider a slightly modified form of the standard Rudin-Keisler order on ideals and demonstrate the existence of complete (with respect to this order) ideals in various projective classes. Using our methods, we obtain a simple proof of Hjorth’s theorem on the existence of a complete Π¹₁ equivalence relation. This proof enables us (under PD) to generalize Hjorth’s result to the classes of Π¹2n+1 equivalence relations.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:283293
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5,
     author = {Konstantinos A. Beros},
     title = {Weak Rudin-Keisler reductions on projective ideals},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {65-78},
     zbl = {06497294},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5}
}
Konstantinos A. Beros. Weak Rudin-Keisler reductions on projective ideals. Fundamenta Mathematicae, Tome 233 (2016) pp. 65-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-5/