Calibres, compacta and diagonals
Paul Gartside ; Jeremiah Morgan
Fundamenta Mathematicae, Tome 233 (2016), p. 1-19 / Harvested from The Polish Digital Mathematics Library

For a space Z let 𝒦(Z) denote the partially ordered set of all compact subspaces of Z under set inclusion. If X is a compact space, Δ is the diagonal in X², and 𝒦(X²∖Δ) has calibre (ω₁,ω), then X is metrizable. There is a compact space X such that X²∖Δ has relative calibre (ω₁,ω) in 𝒦(X²∖Δ), but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on 𝒦(A) for every subspace of a space X are answered.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:282982
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-1,
     author = {Paul Gartside and Jeremiah Morgan},
     title = {Calibres, compacta and diagonals},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {1-19},
     zbl = {1339.54021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-1}
}
Paul Gartside; Jeremiah Morgan. Calibres, compacta and diagonals. Fundamenta Mathematicae, Tome 233 (2016) pp. 1-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-1-1/