Jumps of entropy for Cr interval maps
David Burguet
Fundamenta Mathematicae, Tome 228 (2015), p. 299-317 / Harvested from The Polish Digital Mathematics Library

We study the jumps of topological entropy for Cr interval or circle maps. We prove in particular that the topological entropy is continuous at any fCr([0,1]) with htop(f)>(log||f'||)/r. To this end we study the continuity of the entropy of the Buzzi-Hofbauer diagrams associated to Cr interval maps.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283060
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-3-5,
     author = {David Burguet},
     title = {Jumps of entropy for $C^{r}$ interval maps},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {299-317},
     zbl = {06481157},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-3-5}
}
David Burguet. Jumps of entropy for $C^{r}$ interval maps. Fundamenta Mathematicae, Tome 228 (2015) pp. 299-317. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-3-5/