Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6,
author = {Tatiane Cardoso Batista and Juliano dos Santos Gonschorowski and Fabio Armando Tal},
title = {Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits},
journal = {Fundamenta Mathematicae},
volume = {228},
year = {2015},
pages = {93-99},
zbl = {06451634},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6}
}
Tatiane Cardoso Batista; Juliano dos Santos Gonschorowski; Fabio Armando Tal. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, Tome 228 (2015) pp. 93-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6/