Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits
Tatiane Cardoso Batista ; Juliano dos Santos Gonschorowski ; Fabio Armando Tal
Fundamenta Mathematicae, Tome 228 (2015), p. 93-99 / Harvested from The Polish Digital Mathematics Library

Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283068
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6,
     author = {Tatiane Cardoso Batista and Juliano dos Santos Gonschorowski and Fabio Armando Tal},
     title = {Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {93-99},
     zbl = {06451634},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6}
}
Tatiane Cardoso Batista; Juliano dos Santos Gonschorowski; Fabio Armando Tal. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, Tome 228 (2015) pp. 93-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-6/