We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5, author = {Pierre Simon}, title = {Rosenthal compacta and NIP formulas}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {81-92}, zbl = {06451633}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5} }
Pierre Simon. Rosenthal compacta and NIP formulas. Fundamenta Mathematicae, Tome 228 (2015) pp. 81-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5/