Rosenthal compacta and NIP formulas
Pierre Simon
Fundamenta Mathematicae, Tome 228 (2015), p. 81-92 / Harvested from The Polish Digital Mathematics Library

We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283156
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5,
     author = {Pierre Simon},
     title = {Rosenthal compacta and NIP formulas},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {81-92},
     zbl = {06451633},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5}
}
Pierre Simon. Rosenthal compacta and NIP formulas. Fundamenta Mathematicae, Tome 228 (2015) pp. 81-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-5/