Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2, author = {Adriane Ka\"\i chouh}, title = {Amenability and Ramsey theory in the metric setting}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {19-38}, zbl = {06451630}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2} }
Adriane Kaïchouh. Amenability and Ramsey theory in the metric setting. Fundamenta Mathematicae, Tome 228 (2015) pp. 19-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2/