Amenability and Ramsey theory in the metric setting
Adriane Kaïchouh
Fundamenta Mathematicae, Tome 228 (2015), p. 19-38 / Harvested from The Polish Digital Mathematics Library

Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a Gδ condition.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:282618
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2,
     author = {Adriane Ka\"\i chouh},
     title = {Amenability and Ramsey theory in the metric setting},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {19-38},
     zbl = {06451630},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2}
}
Adriane Kaïchouh. Amenability and Ramsey theory in the metric setting. Fundamenta Mathematicae, Tome 228 (2015) pp. 19-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm231-1-2/