How to construct a Hovey triple from two cotorsion pairs
James Gillespie
Fundamenta Mathematicae, Tome 228 (2015), p. 281-289 / Harvested from The Polish Digital Mathematics Library

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs (,˜) and (˜,) in satisfying ˜ and ˜=˜. We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜) as the class of fibrant (resp. trivially fibrant) objects.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:282989
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4,
     author = {James Gillespie},
     title = {How to construct a Hovey triple from two cotorsion pairs},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {281-289},
     zbl = {1316.18012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4}
}
James Gillespie. How to construct a Hovey triple from two cotorsion pairs. Fundamenta Mathematicae, Tome 228 (2015) pp. 281-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4/