Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs and in satisfying and . We show how to construct a (necessarily unique) abelian model structure on with (resp. ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ) as the class of fibrant (resp. trivially fibrant) objects.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4, author = {James Gillespie}, title = {How to construct a Hovey triple from two cotorsion pairs}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {281-289}, zbl = {1316.18012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4} }
James Gillespie. How to construct a Hovey triple from two cotorsion pairs. Fundamenta Mathematicae, Tome 228 (2015) pp. 281-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-4/