Template iterations and maximal cofinitary groups
Vera Fischer ; Asger Törnquist
Fundamenta Mathematicae, Tome 228 (2015), p. 205-236 / Harvested from The Polish Digital Mathematics Library

Jörg Brendle (2003) used Hechler’s forcing notion for adding a maximal almost disjoint family along an appropriate template forcing construction to show that (the minimal size of a maximal almost disjoint family) can be of countable cofinality. The main result of the present paper is that g, the minimal size of a maximal cofinitary group, can be of countable cofinality. To prove this we define a natural poset for adding a maximal cofinitary group of a given cardinality, which enjoys certain combinatorial properties allowing it to be used within a similar template forcing construction. Additionally we find that p, the minimal size of a maximal family of almost disjoint permutations, and e, the minimal size of a maximal eventually different family, can be of countable cofinality.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283159
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-1,
     author = {Vera Fischer and Asger T\"ornquist},
     title = {Template iterations and maximal cofinitary groups},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {205-236},
     zbl = {06438020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-1}
}
Vera Fischer; Asger Törnquist. Template iterations and maximal cofinitary groups. Fundamenta Mathematicae, Tome 228 (2015) pp. 205-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-3-1/