We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow of the automorphism group of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and is amenable, then admits a unique invariant Borel probability measure that is concentrated on a unique generic orbit.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3, author = {Moritz M\"uller and Andr\'as Pongr\'acz}, title = {Topological dynamics of unordered Ramsey structures}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {77-98}, zbl = {1318.05041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3} }
Moritz Müller; András Pongrácz. Topological dynamics of unordered Ramsey structures. Fundamenta Mathematicae, Tome 228 (2015) pp. 77-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3/