We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow of the automorphism group of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and is amenable, then admits a unique invariant Borel probability measure that is concentrated on a unique generic orbit.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3,
author = {Moritz M\"uller and Andr\'as Pongr\'acz},
title = {Topological dynamics of unordered Ramsey structures},
journal = {Fundamenta Mathematicae},
volume = {228},
year = {2015},
pages = {77-98},
zbl = {1318.05041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3}
}
Moritz Müller; András Pongrácz. Topological dynamics of unordered Ramsey structures. Fundamenta Mathematicae, Tome 228 (2015) pp. 77-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-1-3/