Packing spectra for Bernoulli measures supported on Bedford-McMullen carpets
Thomas Jordan ; Michał Rams
Fundamenta Mathematicae, Tome 228 (2015), p. 171-196 / Harvested from The Polish Digital Mathematics Library

We consider the packing spectra for the local dimension of Bernoulli measures supported on Bedford-McMullen carpets. We show that typically the packing dimension of the regular set is smaller than the packing dimension of the attractor. We also consider a specific class of measures for which we are able to calculate the packing spectrum exactly, and we show that the packing spectrum is discontinuous as a function on the space of Bernoulli measures.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283376
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-5,
     author = {Thomas Jordan and Micha\l\ Rams},
     title = {Packing spectra for Bernoulli measures supported on Bedford-McMullen carpets},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {171-196},
     zbl = {1318.28012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-5}
}
Thomas Jordan; Michał Rams. Packing spectra for Bernoulli measures supported on Bedford-McMullen carpets. Fundamenta Mathematicae, Tome 228 (2015) pp. 171-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-5/