Some model theory of SL(2,ℝ)
Jakub Gismatullin ; Davide Penazzi ; Anand Pillay
Fundamenta Mathematicae, Tome 228 (2015), p. 117-128 / Harvested from The Polish Digital Mathematics Library

We study the action of G = SL(2,ℝ), viewed as a group definable in the structure M = (ℝ,+,×), on its type space SG(M). We identify a minimal closed G-flow I and an idempotent r ∈ I (with respect to the Ellis semigroup structure * on SG(M)). We also show that the “Ellis group” (r*I,*) is nontrivial, in fact it is the group with two elements, yielding a negative answer to a question of Newelski.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283255
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-2,
     author = {Jakub Gismatullin and Davide Penazzi and Anand Pillay},
     title = {Some model theory of SL(2,$\mathbb{R}$)},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {117-128},
     zbl = {1322.03026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-2}
}
Jakub Gismatullin; Davide Penazzi; Anand Pillay. Some model theory of SL(2,ℝ). Fundamenta Mathematicae, Tome 228 (2015) pp. 117-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-2-2/