We force from large cardinals a model of ZFC in which and both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model even satisfies the super tree property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-3, author = {Laura Fontanella and Sy David Friedman}, title = {The tree property at both $\_{o+1}$ and $\_{o+2}$ }, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {83-100}, zbl = {06401014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-3} }
Laura Fontanella; Sy David Friedman. The tree property at both $ℵ_{ω+1}$ and $ℵ_{ω+2}$ . Fundamenta Mathematicae, Tome 228 (2015) pp. 83-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-3/