Borel completeness of some ℵ₀-stable theories
Michael C. Laskowski ; Saharon Shelah
Fundamenta Mathematicae, Tome 228 (2015), p. 1-46 / Harvested from The Polish Digital Mathematics Library

We study ℵ₀-stable theories, and prove that if T either has eni-DOP or is eni-deep, then its class of countable models is Borel complete. We introduce the notion of λ-Borel completeness and prove that such theories are λ-Borel complete. Using this, we conclude that an ℵ₀-stable theory satisfies I,(T,λ)=2λ for all cardinals λ if and only if T either has eni-DOP or is eni-deep.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:283327
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-1,
     author = {Michael C. Laskowski and Saharon Shelah},
     title = {Borel completeness of some 0-stable theories},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {1-46},
     zbl = {06401012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-1}
}
Michael C. Laskowski; Saharon Shelah. Borel completeness of some ℵ₀-stable theories. Fundamenta Mathematicae, Tome 228 (2015) pp. 1-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm229-1-1/