Coloring grids
Ramiro de la Vega
Fundamenta Mathematicae, Tome 228 (2015), p. 283-289 / Harvested from The Polish Digital Mathematics Library

A structure =(A;Ei)in where each Ei is an equivalence relation on A is called an n-grid if any two equivalence classes coming from distinct Ei’s intersect in a finite set. A function χ: A → n is an acceptable coloring if for all i ∈ n, the χ-1(i) intersects each Ei-equivalence class in a finite set. If B is a set, then the n-cube Bⁿ may be seen as an n-grid, where the equivalence classes of Ei are the lines parallel to the ith coordinate axis. We use elementary submodels of the universe to characterize those n-grids which admit an acceptable coloring. As an application we show that if an n-grid does not admit an acceptable coloring, then every finite n-cube is embeddable in .

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286401
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-3-5,
     author = {Ramiro de la Vega},
     title = {Coloring grids},
     journal = {Fundamenta Mathematicae},
     volume = {228},
     year = {2015},
     pages = {283-289},
     zbl = {1319.03052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-3-5}
}
Ramiro de la Vega. Coloring grids. Fundamenta Mathematicae, Tome 228 (2015) pp. 283-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-3-5/