A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-6, author = {Miros\l aw Sobolewski}, title = {A weakly chainable uniquely arcwise connected continuum without the fixed point property}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {81-86}, zbl = {1314.54021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-6} }
Mirosław Sobolewski. A weakly chainable uniquely arcwise connected continuum without the fixed point property. Fundamenta Mathematicae, Tome 228 (2015) pp. 81-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-6/