Given a metric space ⟨X,ρ⟩, consider its hyperspace of closed sets CL(X) with the Wijsman topology . It is known that is metrizable if and only if X is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to being normal. We prove that if the weight of X is a regular uncountable cardinal and X is locally separable, then is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5,
author = {Rodrigo Hern\'andez-Guti\'errez and Paul J. Szeptycki},
title = {Wijsman hyperspaces of non-separable metric spaces},
journal = {Fundamenta Mathematicae},
volume = {228},
year = {2015},
pages = {63-79},
zbl = {1316.54004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5}
}
Rodrigo Hernández-Gutiérrez; Paul J. Szeptycki. Wijsman hyperspaces of non-separable metric spaces. Fundamenta Mathematicae, Tome 228 (2015) pp. 63-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5/