Given a metric space ⟨X,ρ⟩, consider its hyperspace of closed sets CL(X) with the Wijsman topology . It is known that is metrizable if and only if X is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to being normal. We prove that if the weight of X is a regular uncountable cardinal and X is locally separable, then is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5, author = {Rodrigo Hern\'andez-Guti\'errez and Paul J. Szeptycki}, title = {Wijsman hyperspaces of non-separable metric spaces}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {63-79}, zbl = {1316.54004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5} }
Rodrigo Hernández-Gutiérrez; Paul J. Szeptycki. Wijsman hyperspaces of non-separable metric spaces. Fundamenta Mathematicae, Tome 228 (2015) pp. 63-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-5/