We are interested in deformations of Baker domains by a pinching process in curves. In this paper we deform the Fatou function , depending on the curves selected, to any map of the form , p/q a rational number. This process deforms a function with a doubly parabolic Baker domain into a function with an infinite number of doubly parabolic periodic Baker domains if p = 0, otherwise to a function with wandering domains. Finally, we show that certain attracting domains can be deformed by a pinching process into doubly parabolic Baker domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1, author = {Patricia Dom\'\i nguez and Guillermo Sienra}, title = {Some pinching deformations of the Fatou function}, journal = {Fundamenta Mathematicae}, volume = {228}, year = {2015}, pages = {1-15}, zbl = {06366987}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1} }
Patricia Domínguez; Guillermo Sienra. Some pinching deformations of the Fatou function. Fundamenta Mathematicae, Tome 228 (2015) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1/