We are interested in deformations of Baker domains by a pinching process in curves. In this paper we deform the Fatou function , depending on the curves selected, to any map of the form , p/q a rational number. This process deforms a function with a doubly parabolic Baker domain into a function with an infinite number of doubly parabolic periodic Baker domains if p = 0, otherwise to a function with wandering domains. Finally, we show that certain attracting domains can be deformed by a pinching process into doubly parabolic Baker domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1,
author = {Patricia Dom\'\i nguez and Guillermo Sienra},
title = {Some pinching deformations of the Fatou function},
journal = {Fundamenta Mathematicae},
volume = {228},
year = {2015},
pages = {1-15},
zbl = {06366987},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1}
}
Patricia Domínguez; Guillermo Sienra. Some pinching deformations of the Fatou function. Fundamenta Mathematicae, Tome 228 (2015) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-1/