Consider a transitive definable action of a Lie group G on a definable manifold M. Given two (locally) definable subsets A and B of M, we prove that the dimension of the intersection σ(A) ∩ B is not greater than the expected one for a generic σ ∈ G.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2, author = {Krzysztof Jan Nowak}, title = {A theorem on generic intersections in an o-minimal structure}, journal = {Fundamenta Mathematicae}, volume = {227}, year = {2014}, pages = {21-25}, zbl = {06330484}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2} }
Krzysztof Jan Nowak. A theorem on generic intersections in an o-minimal structure. Fundamenta Mathematicae, Tome 227 (2014) pp. 21-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2/