Consider a transitive definable action of a Lie group G on a definable manifold M. Given two (locally) definable subsets A and B of M, we prove that the dimension of the intersection σ(A) ∩ B is not greater than the expected one for a generic σ ∈ G.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2,
author = {Krzysztof Jan Nowak},
title = {A theorem on generic intersections in an o-minimal structure},
journal = {Fundamenta Mathematicae},
volume = {227},
year = {2014},
pages = {21-25},
zbl = {06330484},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2}
}
Krzysztof Jan Nowak. A theorem on generic intersections in an o-minimal structure. Fundamenta Mathematicae, Tome 227 (2014) pp. 21-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm227-1-2/