Given a real analytic manifold Y, denote by the associated subanalytic site. Now consider a product Y = X × S. We construct the endofunctor on the category of sheaves on and study its properties. Roughly speaking, is a sheaf on . As an application, one can now define sheaves of functions on Y which are tempered or Whitney in the relative sense, that is, only with respect to X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-5,
author = {Teresa Monteiro Fernandes and Luca Prelli},
title = {Relative subanalytic sheaves},
journal = {Fundamenta Mathematicae},
volume = {227},
year = {2014},
pages = {79-99},
zbl = {1305.18056},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-5}
}
Teresa Monteiro Fernandes; Luca Prelli. Relative subanalytic sheaves. Fundamenta Mathematicae, Tome 227 (2014) pp. 79-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-5/