In this paper we consider those Fraïssé classes which admit companion classes in the sense of [KPT]. We find a necessary and sufficient condition for the automorphism group of the Fraïssé limit to be amenable and apply it to prove the non-amenability of the automorphism groups of the directed graph S(3) and the boron tree structure T. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel-Kechris-Lyons [AKL]. By considering , where is the countably infinite-dimensional vector space over a finite field , we show that the unique invariant measure on the universal minimal flow of is not supported on the generic orbit.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-3,
author = {Andy Zucker},
title = {Amenability and unique ergodicity of automorphism groups of Fra\"\i ss\'e structures},
journal = {Fundamenta Mathematicae},
volume = {227},
year = {2014},
pages = {41-61},
zbl = {06296424},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-3}
}
Andy Zucker. Amenability and unique ergodicity of automorphism groups of Fraïssé structures. Fundamenta Mathematicae, Tome 227 (2014) pp. 41-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm226-1-3/